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The Acceleration Consortium and Merck KGaA hosted a 2-day virtual hackathon on March 27-
28, 2024, bringing together scientists to explore, collaborate, and innovate in the field of Bayesian
optimization for the physical sciences. Participants were encouraged to select or develop Bayesian
optimization algorithms, apply them to benchmarking tasks, design new benchmarks, create in-
structional tutorials, and describe real-world applications. With over 100 participants across 69
academic, industry, and government organizations located in 59 cities, 19 countries, and 4 continents,
this was a global event. The outputs from this event, including developed algorithms, benchmarks,
and tutorials, will serve as valuable resources for the research community, in addition to the new
skills learned and connections formed. Released projects and general information are available at
https://ac-bo-hackathon.github.io/ and other locations linked from individual project pages.
This event demonstrates the potential of community-driven research efforts to accelerate advances
in Bayesian optimization in chemistry and materials science.
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Figure 1. Optimization traces for traditional design of ex-

periment (DoE) methods compared with BO, typically out-
performs. BO uses a smart model to predict where to look
next in an experiment to find the best results with few exper-
iments [1].

I. Introduction

Bayesian optimization (BO) has emerged as a power-
ful tool in optimizing complex and expensive-to-evaluate
functions, often outperforming traditional search meth-
ods in a variety of scientific domains such as optimizing
composition and processing parameters to maximize al-
loy yield strength or identifying synthesis pathways that
maximize efficacy of HIV drugs (Figure 1). Hackathons
help people to connect, gain skills, and flesh out new
ideas. In the words of Michelle Duke, the “Hackathon
Queen”:

A hackathon is a short competition where
people work together in teams to solve prob-
lems and challenges by coming up with solu-
tions and ideas.

The goal of the AC BO Hackathon was to leverage
the expertise of a diverse, global community to advance
the development and application of BO techniques for
solving critical challenges in the physical sciences. The
hackathon also aimed to foster collaboration and knowl-
edge sharing among participants from different back-
grounds, including academia, national laboratories, gov-
ernment agencies, and private industry. The event at-
tracted 139 active participants from 39 teams, represent-
ing 52 academic institutions, 3 national labs, and 14
companies. Likewise, the participants were located in
59 cities, 19 countries, and 4 continents (Figure 2). A
full list of projects, including links to the corresponding
GitHub repositories, submission video, and social media
post are provided in Table I.

II. Hackathon Details and Setup

This hackathon was in large part inspired by Jablonka
et al. [2] and is one of several materials-focused
hackathons in the past [3, 4].

Participants were provided with various resources to
prepare for the hackathon — this included GitHub class-
room assignments with automated feedback, application-
and theory-focused videos and tutorials, Python refresher
materials, a list of tools to consider using during the
hackathon, project submission instructions, and author-
ship criteria (Figure 3).

One of the unique aspects of this event is that it was
hosted in Gather Town, a sort of union between tradi-
tional video conferencing software and retro arcade-style
avatars and virtual spaces (Figure 4). Participants cre-
ate a custom avatar and maneuver in a two-dimensional
space. The videos and audio of other participants ap-
pear and become audible when nearby, and fade out
when far away, simulating an in-person experience. At
the beginning of the hackathon, all participants gath-
ered to listen to keynotes in realtime, which were broad-
casted via YouTube live and embedded into the Gather
Town space. The videos were then made available on
the hackathon website, which collectively garnered ap-
proximately 1600 views within two months. After the
keynotes, teams were assigned tables in breakout rooms,
each with a whiteboard. Individual tables were assigned
as “private spaces” which isolated the shared audio and
video within each space. This had a number of advan-
tages for collaboration within and across teams.

The hackathon concluded with a project showcase ac-
companied by crowdsourced judging within a “poster
room” (Figure 5).

Community judging occurred via Gavel, an automated
pairwise comparison judging system. Use of this system
helped to improve fairness, scalability, and accuracy by
having judges compare projects relative to each other
rather than assigning subjective numerical scores (for ex-
ample, “rate your pain on a scale from 1 to 10, where 10 is
the worst possible pain you can imagine”). The approach
of pairwise judging reduces bias, allows for handling large
competitions efficiently, and produces high-quality rank-
ings using statistical models with dynamic assignments
to judges to maximize information gain. It has been suc-
cessfully used at HackMIT and other events to streamline
judging and enhance transparency and credibility.

The corresponding Gavel web app was hosted on
Heroku according to directions in the Gavel repository.
Individualized links were distributed to judges via email
using Gavel’s SendGrid integration. Collectively, 35
judges cast 319 votes.
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Figure 2. Demographic distributions of the hackathon participants and their affiliations. The hackathon supported 139 partic-
ipants across 69 academic, industry, and government organizations located in 59 cities, 19 countries, and 4 continents.
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Hackathon resources

Getting Started

Slack - Join the hackathon’s Slack channel to connect, ask
questions, and form teams

Project proposals - team leaders should submit their
project proposals using the instructions here

Gather - Add the Gather Town event to your calendar

Accelerated discovery forum - create an account to join
the discussion forums

Bayesian optimization - Watch the Accelerate "23 training
workshop on Bayesian optimization below

What ave Maie's objectives”

A Gentle Introduction to Bayesian
Optimization

Resources

Orientation Modules

Please complete the following orientation assignments in preparation
for the hackathon to familiarize the tools and concepts you'll need. You
will need to create a GitHub account to access these resources. If you
are already familiar with git and GitHub, you may skip directly to “Intro
to GitHub Classroom", When prompted, please select an identifier from
the list that's given. In addition to these orientation modules, we also
recommend that you familiarize yourself with Markdown syntax if this is
new to you.

# Intro to Git and GitHub # Intro to GitHub Classroom

For those looking for a refresher on Python programming o to
implement a simple BO example, see the following GitHub Classroom
assignments:

# Python Refresher # Simple Bayesian optimization script

What is GitHub?

Bayesian optimization

Bayes Rule by 3Bluz1Brown - explanation of the
fundamental concapt behind Bayesian methods

A Visual Exploration of Gaussian Pro
explanation of 2 commonly used pradi
Bayesian optimization with visualizations and
mathematical rigor

Exploring Bayesian Optimization - An overview of active
learning and Bayesian optimization with visualizations
and mathematical rigor

Bayesian Optimization Book - For those that REALLY want
1o 8O, this s a self d .
deep dive that builds up basic principles from “scratch”
and delves into advanced topics. The book is free and
open-source.

What is Python?

BO Tools Enee

BayBE

Bayesian Back End

Figure 3. A snapshot of resources listed on the hackathon webpage such as hackathon orientation, intro to BO, and a Python
refresher assignment. These resources prepared participants to maximize their time during the two-day synchronous portion of
the hackathon and helped level the playing field for participants with varied backgrounds and skill levels. Image is blurred per
preprint server policy.
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Figure 4. Gather town keynote room (left), custom avatars (top-right), and an example of a breakout room for teams (bottom-
right). Keynotes were broadcasted in realtime to participants via an embedded YouTube livestream. Use of Gather Town
helped level the playing field for teams who were in physically separate locations and made it easier for facilitators and other
teams to have more natural “check-ins” with other projects.
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Figure 5. The synchronous portion of the hackathon concluded with a poster session and community judging. One participant
noted that “it almost felt like a real poster session.”
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Table I: List of projects with links to GitHub, Social Media, and Video.
Project pages on the hackathon website are available at https://ac-
bo-hackathon.github.io/projects/.

Proj. # Project Name Links

1 Multi-objective Benchmarking of Dragonfly against BoTorch (e Ninl [

2 Long-run Behaviour of Multi-fidelity Bayesian Optimisation O M me

3 Take Your Time - Improving Optimization Performance Through Greater O W
Investment in ACQF Optimizer Runtime

4 SimpleGPT-BO, Simplified GPT-Powered Bayesian Optimization (v Ninl [

5 Comparing Bayesian Optimization Methods Across Multiple Q) W
Hyperparameters Against Simulated “Human” Decision-making

6 Multi-Objective Bayesian Optimization for Transparent Electromagnetic O Y B
Interference Shielding with Thin-Film Structures

7 BayBE One More Time - Exploring Corrosion Inhibitors for Materials Design ¢ M me

8 BO for Drug Discovery-What is the role of molecular representation? (v inl [

9 Optimal MOF Selection for CO2 capture using Thompson sampling ¢ W

10 Navigating the black box of zeolite synthesis with Bayesian Optimization O Y B

11 BlendDS - An intuitive specification of the design space for blends of O m me
components

12 Robust GPs for Sustainable Concrete via Bayesian Optimization ¢ M me

13 Interpretability of Bayesian Optimisation Campaigns O W

15 Adaptive Batch Sizes for Bayesian Optimization of Reaction Yield Q) W

16 BOPE-GPT, Preference Exploration with the curious AI chemist (o inl [

17 Comparative Analysis of Acquisition Functions in Bayesian Optimization for (e inl [
Drug Discovery

18 Investigation of Multi-Objective Bayesian Optimization of QM9 Dataset O M me

20 Closed loop optimization of hydrogel formulations using dynamic light ¢ M me
scattering

21 Benchmarking Molecular Descriptors with Actively Identified Subsets O W
(MolDAIS)

22 Chemical Similarity-Informed Earth Mover’s Distance Kernel Bayesian O W
Optimization for Predicting the Properties of Molecules and Molecular
Mixtures

23 Reliable Surrogate Models of Noisy Data ©

24 ScattBO Benchmark - Bayesian optimisation for materials discovery O Y B

25 Bayesian Optimized De Novo Drug Design for Selective Kinase Targeting O W

26 Multiple-Context Bayesian Optimization O Y B

27 How does initial warm-up data influence Bayesian optimization in low-data O Y B
experimental settings?

28 The Impact of Dataset Size on Bayesian Optimization, Insights from the © W
QM9 Dataset

30 Active learning for voltammetry waveform design (v Ninl [

31 A tutorial on ask/tell mode for Ax O M me

32 Efficient Protein Mutagenisis using Bayesian Optimization O m me

33 Bayesian Optimization for Hyperspectral Co-heritability Search QO Y B

34 Streamlining Material Discovery - Bayesian Optimization in Thermal Fluid O m
Mixtures

35 Tutorial for GAUCHE - A Library for Gaussian Processes in Chemistry O Y B

36 Scalable Nonmyopic Bayesian Optimization in Dynamic Cost Settings O Y B

37 The Effects of Post-Modelling Performance Metric Computation on the (v inl [
Efficiency of Bayesian Optimizers

38 Bayesian methods in symbolic regression O me

39 Divide and Conquer - Local Gaussian Processes to design Covalent Organic O Y B
Frameworks for Methane Deliverable Capacity

40 Optimizing Chemical Reaction Conditions with Multi-Agent Systems Using O Y B
LLM and BO

41 Retrieval Augmented Bayesian Optimization O Y B

43 Bayesian Optimization Awesome List ¢ m

44 Rank-based Bayesian Optimization O Y B

45 Bayesian Optimization for generality ¢ W

Continued on the next page
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Table I: List of projects with links to GitHub, Social Media, and Video.
Project pages on the hackathon website are available at https://ac-

bo-hackathon.github.io/projects/.

Proj. # Project Name

Links

ITI. Projects’ Key Findings

This section provides a comprehensive summary and
highlights the key findings from all project submis-
sions. To streamline the evaluation process, all YouTube
video submissions were transcribed and analyzed using
an Al agent powered by Anthropics’s claude-3-5-sonnet-
20240620 with a temperature of 0.3, ensuring consistent
and accurate processing. Each transcript was then man-
ually edited to ensure a high-quality manuscript compila-
tion. This automated approach enhances efficiency while
maintaining a structured and objective assessment of the
submissions.

Project 1: Multi-objective Benchmarking of
Dragonfly against BoTorch

This research project compared the performance of two
BO packages, Dragonfly [5] and BoTorch [6], in a multi-
objective optimization context. The researchers opti-
mized the Branin-Currin test function with added noise,
conducting 20 trials of BO over different random seeds.
Each trial used a batch size of 1 and consisted of 20 itera-
tions, evaluating 20 candidates per iteration. The results
showed that BoTorch’s acquisition functions, particularly
the g-noisy expected hypervolume improvement (qNE-
HVI) [7], outperformed Dragonfly’s acquisition function.
The gNEHVT acquisition function achieved the lowest log
hypervolume difference on average across the trials, while
Dragonfly’s acquisition function struggled to surpass a
randomly generated set of candidates. Visualization of
the average Pareto front produced by different acquisi-
tion functions further demonstrated BoTorch’s superior-
ity, with its acquisition functions covering a larger por-
tion of the Pareto front compared to Dragonfly. The
researchers concluded that BoTorch outperformed Drag-
onfly within the scope of their study, but noted the need
for further investigation using different batch sizes, in-
put and output constraints, and test functions simulat-
ing chemical reactions to apply the findings to material
design problems.

Project 2: Long-run Behaviour of Multi-fidelity
Bayesian Optimisation

This research project investigates the long-term per-
formance of multifidelity Bayesian optimization (MFBO)
methods [8] compared to single-fidelity Bayesian opti-
mization (SFBO) methods. The study focuses on sce-
narios where two fidelities are available: an accurate but
expensive target fidelity that fully represents the objec-
tive, and a less accurate but cheaper low fidelity. The
researchers observed that while MFBO methods initially

outperform SFBO up to a budget of approximately 20,
they begin to underperform beyond this point. This be-
havior is particularly evident with linear kernel MFBO
methods, where the performance gap becomes more pro-
nounced after a cost of around 60.The project aims to
evaluate the factors contributing to the long-term issues
of MFBO methods. Specifically, the researchers plan
to investigate the impact of kernel choice, frequency of
low fidelity queries, and acquisition function selection on
MFBO performance. By analyzing these aspects, the
study seeks to identify potential improvements for MFBO
methods to enhance their applicability in real-life opti-
mization tasks. The ultimate goal is to develop MFBO
approaches that can maintain their performance advan-
tage over SFBO methods in the long run, leveraging the
cost-effectiveness of low fidelity queries while achieving
superior optimization results.

Project 3: Take Your Time - Improving
Optimization Performance Through Greater
Investment in ACQF Optimizer Runtime

This research project explores an enhancement to stan-
dard BO campaigns by introducing a random seed ap-
proach to improve optimization outcomes. The team
from the University of Utah’s Material Science and En-
gineering department investigated the variability in BO
campaigns when starting from the same initial data
points. The key innovation in this work is a custom ap-
proach to calculating the acquisition function. Instead of
computing it once per iteration, as is standard in most
BO methods [9, 10], the researchers calculate the acquisi-
tion function multiple times using different random seeds.
They then select the highest-performing result at each
iteration. This method, termed “random retries Opti-
mizer”, showed significant improvements in optimization
performance, particularly in avoiding local optima. The
researchers demonstrated that this approach consistently
achieves near-optimal performance among the possible
campaigns stemming from the initial data points. While
this method requires additional computational time for
the multiple acquisition function calculations, the per-
formance gains appear to outweigh the increased com-
putational cost. The team is continuing to investigate
questions such as the trade-off between additional com-
pute time and performance improvements, as well as how
the method performs across different types of optimiza-
tion problems, including simpler ones compared to the
challenging example presented.
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Table II. Ranked Projects with Team Names and Prize Distribution. To avoid incentivizing single-person teams and very large
teams, both per-person and per-team limits were imposed (e.g., teams of 4 or more would have the max per-team amount

divided equally rather than receive the max per-person amount).

Rank Proj. # Team Name  Project Name

Prize* (CAD)

1st #23 Noisy Nerds Reliable Surrogate Models of Noisy Data 300 (1000 max)

2nd #34 BOMS Prob Streamlining Material Discovery - Bayesian Optimization 150 (500 max)
in Thermal Fluid Mixtures

3rd #7 Surface Science BayBE One More Time - Exploring Corrosion Inhibitors 75 (250 max)

Syndicate for Materials Design

4th #5 KLM Comparing Bayesian Optimization Methods ... Against 40 (125 max)
Simulated “Human” Decision-making

5th #8 Molecular BO for Drug Discovery - What is the role of molecular 40 (125 max)

Representation  representation?

6th #9 PME No Hikari Optimizing The CO2 Adsorption Capacity of Metal- 40 (125 max)
Organic Frameworks Using Thompson Sampling

Tth #11 BlenDS BlendDS - An intuitive specification of the design space 40 (125 max)
for blends of components

8th #30 SERO Opt Active learning for voltammetry waveform design 40 (125 max)

9th #43  General Optimizers Bayesian Optimization for Generality 40 (125 max)

10th #3 Sparks Group  Take Your Time - Measuring Optimization Performance 40 (125 max)
as a Function of ACQF Optimizer Runtime

Table III. Project Topics for the Hackathon. See the submission page for more details.
Topic Description

1 Apply Algorithms Choose an algorithm and apply it to a hackathon benchmark task

2 Develop Benchmarks Develop a new benchmark and add it to a suite of benchmarks

3 Create Tutorials Create “gentle introduction” tutorials for advanced optimization topics

4 Propose Tasks Propose materials tasks that can and should be tackled with BO

5 General Other projects related to BO for the physical sciences

Project 4: SimpleGPT-BO, Simplified
GPT-Powered Bayesian Optimization

SimpleGPT-BO is a ChatGPT-integrated tool that
makes Bayesian Optimization accessible without instal-
lation requirements. The system provides guided opti-
mization through multiple acquisition functions (PI, EI,
UCB, TPE) and supports multi-objective optimization
via weighted single objective transformation. Users ac-
cess the tool directly through ChatGPT’s interface or via
provided URLs, benefiting from pre-generated instruc-
tions and global availability. While designed for straight-
forward optimization tasks rather than complex analyses,
the open-source project (MIT License) welcomes com-
munity contributions to expand functionality and appli-

cations. The tool aims to democratize Bayesian Opti-
mization by eliminating technical barriers and providing
step-by-step guidance for users across all experience lev-
els.

Project 5: Comparing Bayesian Optimization
Methods Across Multiple Hyperparameters Against
Simulated ”Human” Decision-making

This research project investigated the effectiveness
of BO methods that mimic human experimentalist ap-
proaches in materials science [11], comparing them to
traditional BO techniques and random search base-
lines [10, 12]. The study focused on three key axes:
model complexity, number of features, and acquisition
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function. The researchers found that a simplified “hu-
man experimentalist” approach, using automated feature
engineering with a linear model, three features, and an
exploitative acquisition function, was competitive with
more complex random forest models in terms of enhance-
ment factor and acceleration factor. Both the simpli-
fied approach and random forest models outperformed
random search. Interestingly, for linear models, increas-
ing complexity through additional features or more ex-
ploratory acquisition functions led to decreased perfor-
mance. The main conclusion was that low-dimensional,
interpretable models were comparable to traditional BO
methods for the datasets and hyperparameter regimes
studied. The researchers suggest future work could in-
volve comparing their results to actual human perfor-
mance and improving their methodology using theoreti-
cal approaches.

Project 6: Multi-Objective Bayesian Optimization
for Transparent Electromagnetic Interference
Shielding with Thin-Film Structures

This research project focuses on applying multi-
objective BO to design transparent electromagnetic in-
terference (EMI) shielding using thin film structures [13].
The primary objectives are to maximize both transmit-
tance and shielding effectiveness simultaneously. The
optimization problem involves selecting materials and
thicknesses for each layer of the thin film structure, with
a search space comprising 12 material choices (Ag, Al
A1.20.3, Cr, Ni, Pd, Si_3N_4, SiO_2, Ti, TiN, TiO_2, W)
and thickness ranges from 5 to 20 nm. The researchers
implemented multi-objective BO using random scalariza-
tion for the acquisition function via BayesO package [14].
Gaussian process regression and expected improvement
were employed as part of the BO framework. The re-
sults demonstrate that the multi-objective BO approach
effectively identified the Pareto frontier for the two objec-
tives of transmittance and shielding effectiveness. This
suggests that the method is successful in finding opti-
mal trade-offs between transparency and EMI shielding
performance for thin film structures, which could have
applications in areas such as spacecraft windows where
both properties are crucial.

Project 7: BayBE One More Time - Exploring
Corrosion Inhibitors for Materials Design

This research project explored the use of BO for ef-
ficiently identifying effective corrosion inhibitors in ma-
terials design. The researchers utilized the BO imple-
mentation from the BayBE package [15] to evaluate its
performance on multiple experimental datasets [16] in-
volving different alloys, primarily aluminum-based. The
study found that the choice of molecular descriptor en-
coding significantly impacted the optimization perfor-
mance, especially for larger datasets like A1000 and
A2024. The SMILES-based approach with Mordred en-
coding [17] outperformed the other methods for these
datasets, while random sampling underperformed. Inter-

estingly, for the A775 dataset, which had a sparse distri-
bution of reported efficiencies and fewer data points, this
trend was not observed. The researchers also explored
transfer learning capabilities, using information from the
A2024 alloy dataset to inform the optimization process
for the A1000 dataset. This transfer learning approach
outperformed the uninformed method after only 15 it-
erations, demonstrating its potential for accelerating the
discovery of effective corrosion inhibitors in experimental
settings.

Project 8: BO for Drug Discovery-What is the role
of molecular representation?

This research project investigated the impact of molec-
ular featurization methods on BO performance for guid-
ing molecular experiments. The team explored alterna-
tives to the commonly used connectivity-based finger-
prints, aiming to determine which featurization tech-
niques yield the best results in BO for molecular dis-
covery.The study found that without modifying the fea-
tures, MACCS [18] and RDKit [19] featurization meth-
ods outperformed the default options presented in pre-
vious publications. To address the high dimensionality
of molecular features, the researchers employed special-
ized Gaussian processes and explored random forest sur-
rogates. However, the random forest approach did not
improve performance and required more computational
resources. Principal Component Analysis (PCA) was
successfully used to enable Gaussian processes to handle
large molecular featurizations. Notably, physicochemi-
cal featurizations like RDKit and Mordred [17] outper-
formed the previous benchmark winner, MolDQN [20].
The team’s findings were consistent with benchmarks in
the BO library but suggested that RDKit could produce
even better results than Mordred. Overall, the research
highlights the importance of careful featurization selec-
tion in BO for molecular discovery, with RDKit emerging
as a particularly effective option.

Project 9: Optimal MOF Selection for CO_2 capture
using Thompson sampling

This research project focuses on optimizing the selec-
tion of Metal-Organic Frameworks (MOFs) for carbon
capture applications using BO, specifically Thompson
Sampling. MOF's are nanoporous materials with high po-
tential for carbon capture [21, 22], but their synthesis and
characterization are expensive and time-consuming [23].
The goal was to develop an efficient method for iden-
tifying high-performing MOF candidates using a small
dataset. The team employed a Gaussian Process model
trained on the CRAFTED dataset [24], using both RACs
features and geometric features of MOFs, with CO_2 up-
take as the output. Thompson Sampling was used as
the acquisition function to select the next best sample
based on the posterior distribution, inherently perform-
ing a Bayesian update. The results showed that Thomp-
son Sampling was twice as efficient as random sampling
in identifying high-performing MOF candidates. This
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approach is notable for being the first application of
Thompson Sampling to MOF candidate selection, and
it requires no hyperparameter tuning, making it easily
transferable and cost-efficient. The potential impact of
this method is significant, as it could accelerate MOF
design for direct air capture applications, with a goal of
absorbing 30 million tons of CO_2, and could also be ap-
plied to post-combustion capture scenarios.

Project 10: Navigating the black box of zeolite
synthesis with Bayesian Optimization

This research project explores the application of BO
to zeolite synthesis, a complex process with significant
industrial importance. Zeolites are crystalline materials
composed of interconnected silicate and aluminate tetra-
hedra, widely used as absorbents and catalysts [25]. The
synthesis of zeolites involves multiple parameters, includ-
ing silicon and aluminum sources, organic molecules, wa-
ter, temperature, and time. The process aims to achieve
specific properties such as high crystallinity, large ex-
ternal surface area, and particular silicon-to-aluminum
ratios, while also considering economic factors like syn-
thesis temperature, duration, and ingredient concentra-
tions [26]. The project presents a GitHub repository con-
taining an introductory text on zeolites and their synthe-
sis, along with a Jupyter notebook demonstrating BO
applications. The notebook is divided into two main
sections: the first optimizes an analytical dummy func-
tion using zeolite synthesis parameters, exploring vari-
ous aspects of BO including continuous, categorical, and
mixed variable types, parameter constraints, and single
and multiple objectives. The second section applies BO
to propose new experiments based on existing literature
data. This approach aims to accelerate the traditionally
time-consuming trial-and-error process of zeolite synthe-
sis optimization, potentially reducing costs and improv-
ing efficiency in industrial applications.

Project 11: BlendDS - An intuitive specification of
the design space for blends of components

This project focuses on developing an interface for
BO that bridges the gap between domain experts (i.e.
chemists and materials scientists) and machine learning
algorithms. The system allows scientists to specify ex-
perimental parameters and constraints in natural lan-
guage, which is then translated into a structured dic-
tionary format by a large language model. This dictio-
nary is subsequently converted into a Python object that
can be used for design of experiments and optimization
tasks.The key feature of this interface is its ability to gen-
erate diverse trial designs for efficient sampling of the ex-
perimental space. It incorporates dimensionality reduc-
tion techniques to visualize the design space, enabling
users to select the most diverse and informative trials.
This approach aims to maximize the information gained
from each experiment, potentially reducing the number
of trials needed to reach optimal results. The project is
open-source, inviting contributions and integration with
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existing BO frameworks.

Project 12: Robust GPs for Sustainable Concrete
via Bayesian Optimization

This project introduces Robust Gaussian Processes
(Robust GPs) [27] to the concrete sciences experiments
with Bayesian optimization campaigns. The research ad-
dresses the common issue of outliers in concrete science
experiments by applying Robust GPs to account for these
anomalies. The project provides a tutorial and accompa-
nying code in a GitHub repository, demonstrating how
to implement Robust GPs in this specific context. The
study utilizes a dataset provided by Meta [28], which in-
cludes input variables and a target variable representing
concrete strength. Initial data analysis reveals poten-
tial outliers in the strength variable, with values between
2 and 2,000. The researchers then apply Robust GP
to this dataset, achieving good predictive performance.
The project culminates in demonstrating how to obtain
Bayesian recommendations using the Robust GP as a sur-
rogate model, providing a practical approach for optimiz-
ing concrete mixtures while accounting for experimental
outliers.

Project 13: Interpretability of Bayesian
Optimisation Campaigns

This research project focused on developing novel
methods for interpreting Bayesian Optimization cam-
paigns by incorporating the temporal component often
neglected in end-of-campaign analyses. The study uti-
lized data from a self-driving lab experiment aimed at
optimizing the conductivity of a coating. The researchers
recreated the Gaussian Process (GP) model employed
in the original experiment, training it on subsets of
data to simulate mid-campaign conditions. Two pri-
mary methods were investigated: First, cross-sections
of the GP model were taken at various stages of the
campaign, holding all but one feature constant. This
approach revealed that closer nozzle distances produced
better results, aligning with prior beliefs and serving as
a potential mid-campaign sense check to validate model
alignment with previous experimentation. The second
method involved predicting the error of the next sam-
ple based on the model trained on data collected up to
that point. This analysis showed that performance im-
provement plateaued around the time the optimal sam-
ple was produced, suggesting its potential use as an
early stopping criterion if error is monitored through-
out the campaign.The research demonstrates the value
of incorporating temporal analysis in Bayesian Opti-
mization campaigns, offering insights that could enhance
decision-making during experiments. The cross-sectional
approach provides a means to validate model behav-
ior against prior knowledge, while the error prediction
method could inform stopping criteria, potentially im-
proving efficiency in optimization processes. These tech-
niques offer promising avenues for real-time interpreta-
tion and guidance in Bayesian Optimization experiments,
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particularly in self-driving lab contexts.

Project 15: Adaptive Batch Sizes for Bayesian
Optimization of Reaction Yield

This research project investigates the optimization of
batch sizes in BO for chemical reaction yield optimiza-
tion. The study focuses on determining the optimal batch
size (Q) at each step of the BO process, considering both
smaller and larger batch sizes. The researchers exam-
ine how Q impacts the cost of retraining models, such as
large language models, and how it relates to additional
experimentation overhead. The project findings indicate
that the optimal Q depends on a trade-off between model
retraining time and additional experimentation overhead.
For a fixed batch size, the researchers observed two min-
ima at Q=3 and Q=7, reflecting the relative importance
of Q in different scenarios. With very large batch sizes,
the retraining cost had minimal impact on the overall
experimental overhead, while experimentation overhead
had a significant influence. The study also explored adap-
tive batch sizing strategies, decreasing batch sizes when
performance was good and increasing them as the sur-
rogate model became more trustworthy. The researchers
conclude that batch sizes have a crucial effect on BO ef-
ficiency in real-world settings, and adaptive batch sizes
could effectively balance the trade-off between model re-
training and batch sampling effectiveness.

Project 16: BOPE-GPT, Preference Exploration
with the curious AI chemist

This research project focused on optimizing the
Fischer-Tropsch synthesis process [29], which converts
syngas into biofuel hydrocarbons. The optimization
problem on the dataset [30, 31] involved four input vari-
ables (space time, syngas ratio, temperature, and pres-
sure) and four output variables (carbon conversion, selec-
tivity, methane to paraffins, and olefins). The researchers
proposed a novel approach using preferential BO [32]
with large language models (LLMs) to prioritize outputs
based on stakeholder preferences. The methodology em-
ployed the typical BO process powered by BoTorch, us-
ing Expected Utility as the acquisition function. How-
ever, the innovation lay in using an LLM (specifically
GPT-4) to perform pairwise comparisons for output pri-
oritization. The results showed that outputs exhibited
well-defined optima trade-offs and some degree of mono-
tonicity, which was important for preferential BO. The
researchers tested three objective scenarios: optimizing
all outputs equally, maximizing only CO conversion, and
maximizing three objectives while minimizing olefins.
For the first two objectives, the LLM-based preferential
BO performed similarly to traditional utility function-
based methods. However, for the third, more complex
objective, the LLM approach performed worse than the
utility function method and only slightly better than ran-
dom exploration, suggesting limitations in the LLM’s
ability to handle complex optimization scenarios. The
project also included the development of an interactive
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application for visualizing BO results and running live
optimizations.

Project 17: Comparative Analysis of Acquisition
Functions in Bayesian Optimization for Drug
Discovery

This project investigates the application of BO tech-
niques directly on molecular fingerprints for drug dis-
covery, focusing on comparing different surrogate mod-
els, acquisition functions and small, diverse, unbalanced,
and noisy datasets [33]. The researchers used the LD50
dataset from PTDC with SMILES encodings [34, 35],
which were transformed into ECFP fingerprints [36], cre-
ating a 2048-dimensional feature space. Two surrogate
models were examined: Gaussian Processes (GP) and
Random Forests (RF). The results showed that in this
high-dimensional space, Random Forests with uncertain-
ties evaluated as variance between different trees achieved
expected performance across all acquisition functions,
significantly outperforming random selection. In con-
trast, Gaussian Processes failed to perform well, likely
due to the challenges posed by the high-dimensional
space (22048 possible combinations) and the relatively
small dataset of only 7,000 data points. The researchers
concluded that machine learning models, particularly
Random Forests with various acquisition functions, per-
form well when dealing with high-dimensional molecular
fingerprint spaces, demonstrating their potential for drug
discovery applications with certain selection biases.

Project 18: Investigation of Multi-Objective
Bayesian Optimization of QM9 Dataset

In this work, the team explores the application of
multi-objective Bayesian optimization (MoBO) tech-
niques to molecular property optimization using the
QM9 dataset [37]. The project implements and com-
pares state-of-the-art MoBO algorithms—including Ex-
pected Hypervolume Improvement (EHVI) [38] and
ParEGO—to [39] efficiently navigate the trade-offs be-
tween multiple molecular objectives such as HOMO-
LUMO gap, molecular weight, and dipole moment.
Leveraging molecular feature encodings and Gaussian
process surrogate models, the optimization framework
identifies candidate molecules that balance competing
objectives in chemical design. This study highlights the
potential of MoBO to accelerate lead discovery by pro-
viding a principled, sample-efficient method for exploring
high-dimensional molecular spaces.

Project 20: Closed loop optimization of hydrogel
formulations using dynamic light scattering

This research project proposes a self-driving lab ap-
proach to optimize hydrogel formulations using BO and
automated characterization techniques. The study aims
to address the challenge of creating hydrogels with spe-
cific properties for applications such as cell culture, tis-
sue engineering, drug delivery, and agriculture. The pro-
posed workflow utilizes an open-source liquid handling

https://doi.org/10.26434/chemrxiv-2025-dzh5z ORCID: https://orcid.org/0000-0001-5696-9193 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0


https://www.youtube.com/watch?v=utnWbJsObF0
https://www.youtube.com/watch?v=utnWbJsObF0
https://www.youtube.com/watch?v=AbRDOdmafB8
https://www.youtube.com/watch?v=AbRDOdmafB8
https://www.youtube.com/watch?v=5AjwoZtjgOc
https://www.youtube.com/watch?v=5AjwoZtjgOc
https://www.youtube.com/watch?v=5AjwoZtjgOc
https://www.youtube.com/watch?v=LwArft0pmP8
https://www.youtube.com/watch?v=LwArft0pmP8
https://youtu.be/Qbvq7uolQr8
https://youtu.be/Qbvq7uolQr8
https://doi.org/10.26434/chemrxiv-2025-dzh5z
https://orcid.org/0000-0001-5696-9193
https://creativecommons.org/licenses/by-nc/4.0/

robot to mix hydrogel formulations in a 96-well plate,
followed by cross-linking using various methods (LED
array, heating module, or time). The key innovation
is the use of Dynamic Light Scattering (DLS) [40] for
automated characterization of gelation and viscoelastic
properties, which can measure gel stiffness up to 10 kilo-
pascals. This DLS method is implemented using a plate
reader specifically designed for 96-well plates, enabling
high-throughput analysis. The resulting property data is
then fed into a Bayesian Optimizer to determine the next
set of formulations and processing parameters to test.
This approach aims to efficiently explore the complex re-
lationship between hydrogel formulation parameters and
their resulting properties, potentially accelerating the de-
velopment of custom hydrogels for specific applications in
biological research and improving data availability and
reliability in the field.

Project 21: Benchmarking Molecular Descriptors
with Actively Identified Subsets (MolDAIS)

This research presents a novel approach called
MOLDES (Molecular Descriptors with Actively Identi-
fied Subspaces) for molecular property optimization. The
method addresses the challenge of optimizing molecules
in high-dimensional spaces by using molecular descriptors
- sets of rotationally and translationally invariant calcu-
lations performed on molecular graphs - coupled with ac-
tive subspace identification. MOLDES employs a sparse
axis-aligned subspace Gaussian Process prior, which ac-
tively learns an encoding while performing Bayesian opti-
mization. Recent works [41, 42] are increasingly turning
towards active encoding of molecular feature spaces. The
researchers evaluated MOLDES on three case studies:
experimental lipophilicity (4,200 compounds), log P opti-
mization benchmark (250,000 molecules), and power con-
version efficiency from the Harvard Clean Energy Project
(30,000 compounds). In all cases, MOLDES demon-
strated superior performance compared to other opti-
mizers, particularly in larger datasets. For the log P
optimization, MOLDES consistently found the optimal
molecule within 100 iterations. The method also showed
strong performance in constrained optimization prob-
lems, often achieving the best-case scenario and main-
taining a favorable worst-case scenario compared to other
methods. Overall, MOLDES proved efficient in identify-
ing high-performing molecules in low-data regimes, of-
fering a promising approach for molecular property opti-
mization tasks.

Project 22: Chemical Similarity-Informed Earth
Mover’s Distance Kernel Bayesian Optimization for
Predicting the Properties of Molecules and
Molecular Mixtures

This research project focuses on developing chemi-
cal similarity-informed distance functions and kernels for
explainable Bayesian optimization, specifically targeting
the prediction of properties for molecular mixtures. The
researchers propose a novel approach that bypasses the
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need for embedding vectors by directly providing pair-
wise distances between data points in the kernel function
of a Gaussian Process (GP) model [43]. The project in-
troduces the Earth Mover’s Distance (EMD) kernel [44]
into the GP framework to calculate pairwise distances be-
tween mixtures based on individual component distances.
This method was tested for predicting yields of binary re-
actant mixtures, demonstrating high chemical resolution
in mixture analysis. The results show that the EMD ker-
nel achieves accurate yield predictions with narrow dis-
tributions for both high and low-yield cases, indicating
improved performance in distinguishing between different
mixture compositions. By incorporating smooth distance
metrics, the researchers successfully extended Bayesian
optimization techniques from pure components to molec-
ular mixtures, potentially enhancing the efficiency and
interpretability of materials property prediction in com-
plex chemical systems.

Project 24: ScattBO Benchmark - Bayesian
optimisation for materials discovery

This project presents ScattBO, a Python-based bench-
mark that simulates a self-driving laboratory (SDL) for
materials discovery. A self-driving laboratory is an
autonomous platform that conducts machine learning-
selected experiments to achieve a user-defined objective,
such as synthesizing a specific material [45]. The bench-
mark addresses the challenge that such SDLs can be ex-
pensive to run, making intelligent experimental planning
essential, while only a few people have access to real SDLs
for materials discovery. ScattBO provides an in silico
simulation of an SDL where, based on synthesis parame-
ters, the benchmark ’synthesizes’ a structure, calculates
the scattering pattern [46], and compares it to the target
structure’s scattering pattern. The benchmark acknowl-
edges that scattering data may not be sufficient to con-
clusively validate that the target material has been syn-
thesized [47], but can include other types of data as long
as they can be simulated. This makes it currently chal-
lenging to benchmark Bayesian optimization algorithms
for experimental planning tasks in SDLs, and ScattBO
fills this gap by providing an accessible simulation envi-
ronment.

Project 25: Bayesian Optimized De Novo Drug
Design for Selective Kinase Targeting

This project focused on incorporating Bayesian opti-
mization to guide de novo drug design, specifically tar-
geting growth factor receptors for cancer therapeutics.
The team built upon the DOCKSTRING paper, Python
library, and dataset [48], using a Gaussian process with
a Matérn kernel on Morgan fingerprint representations.
They employed a graph genetic algorithm to generate
SMILES strings guided by the Bayesian optimization
output. The researchers explored both selective and
promiscuous binding scenarios. For selective binding,
they optimized for binding to FGFR1 while penalizing
overbinding to other growth factor receptors relative to
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their median. For promiscuous binding, they maximized
the maximum binding affinity across multiple receptors.
They found that a sigmoidal penalty function was more
effective than simple absolute differences when optimiz-
ing against multiple proteins. The team also incorpo-
rated a drug-likeness measure (QED) [49] as a penalty
in the optimization process, though its effect was lim-
ited. Due to time and resource constraints, the project
was unable to extensively explore the chemical space or
use more accurate binding affinity calculations beyond
docking. The authors suggest that future work could in-
corporate known unknowns through an evasion process,
further optimize selective binding, and compare different
molecular representations.

Project 26: Multiple-Context Bayesian Optimization

This project focused on exploring multiple context
Bayesian optimization using the BayBE code [15], a
Bayesian backend package built on BoTorch with ad-
ditional features. The primary aim was to investigate
transfer learning capabilities by incorporating data from
existing campaigns into new optimization tasks. The re-
searchers examined both analytical functions (like the
Hartmann 3D function) and real-world data (direct ary-
lation reaction dataset) to assess the effectiveness of
transfer learning in Bayesian optimization. They intro-
duced noise, scaling, shifting, and negation to the analyt-
ical functions to simulate realistic scenarios. The results
demonstrated that using a small percentage (1-25%) of
existing data significantly improved optimization perfor-
mance compared to the baseline without transfer learn-
ing. Interestingly, they found that using larger amounts
of data (50-100%) did not necessarily lead to better re-
sults and in some cases performed worse than the base-
line. The team also explored clustering the existing data
and using cluster centroids as source data, which proved
effective. For the real-world direct arylation dataset, they
analyzed correlations between different reaction temper-
atures and observed that small amounts of transfer data
(1-10%) substantially improved the Bayesian optimiza-
tion campaign. Overall, the project highlighted the po-
tential of transfer learning in Bayesian optimization while
emphasizing that careful selection of the amount and
type of transfer data is crucial for optimal performance.

Project 27: How does initial warm-up data influence
Bayesian optimization in low-data experimental
settings?

This research project investigated the influence of
warm-up sampling methods and dataset sizes on prop-
erty optimization in low data regimes, specifically focus-
ing on molecular property prediction. The team used the
QM9 dataset [50] and selected band gap as the optimiza-
tion target. They compared two chemically-inspired sam-
pling methods for the warm-up dataset: Morgan finger-
prints and MolFormer language model fingerprints. The
researchers also referenced the GDB-17 chemical universe
database [51] in their background work. The researchers
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performed dimensionality reduction on the fingerprints
using PCA | projecting them into a 2D space for sampling.
They conducted experiments to analyze how the warm-
up dataset size affects optimization results. The most sig-
nificant finding was the comparison between Morgan fin-
gerprints and MolFormer fingerprints at a constant data
regime of 50 data points. The results showed that Mol-
Former fingerprints substantially outperformed Morgan
fingerprints, suggesting that pre-trained models on large
chemical spaces can potentially improve model optimiza-
tion rates. This study aims to initiate broader discussions
on how dataset sizes and sampling methodologies impact
final optimization tasks in molecular property prediction.

Project 28: The Impact of Dataset Size on Bayesian
Optimization, Insights from the QM9 Dataset

The Chihuahuas team investigated the critical dataset
size threshold required for effective Bayesian Optimiza-
tion of Graph Convolutional Neural Networks (GCNNs)
using the QM9 molecular dataset [37]. The research
systematically examined hyperparameter optimization
(learning rate, batch size, number of neurons) across
dataset sizes ranging from 200 to 2000 molecules to de-
termine minimum viable data requirements for reliable
BO performance. Results demonstrated that BO suc-
cessfully optimized GCNN hyperparameters even with
small datasets (200 molecules), though performance im-
proved with larger datasets, achieving lowest losses at
2000 molecules (0.001134 for learning rate optimization).
The study revealed a trade-off between dataset size and
computational efficiency, with larger datasets requiring
more time to reach convergence despite better perfor-
mance. The research provides a methodological frame-
work for applying BO in data-scarce scenarios common in
computational chemistry and materials science, demon-
strating that machine learning optimization remains vi-
able even with limited molecular data.

Project 30: Active learning for voltammetry
waveform design

This research project focused on using Bayesian Op-
timization to optimize voltammetry waveforms for sen-
sor performance testing. The researchers employed the
scikit-optimize package [52] to implement a human-in-
the-loop optimization process, allowing for pauses be-
tween optimization iterations to conduct laboratory ex-
periments. The study encoded a four-step pulse wave-
form into a continuous parameter space for the optimiza-
tion model. The process began with six randomly gen-
erated initial waveforms, which were tested in the lab
to obtain performance metrics. These results were used
to initialize a Gaussian process model. The optimization
then proceeded in batches, with the model suggesting the
next best waveforms to test based on previous results.
The researchers conducted four total batches, updating
the model after each laboratory testing phase. Progress
plots were generated to visualize the improvement in sen-
sor error across batches, demonstrating the effectiveness
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of the approach in finding optimal waveform parameters.
The study also explored the interactions between model
parameters and the performance metric across multiple
dimensions, providing insights into the complex relation-
ship between waveform characteristics and sensor perfor-
mance.

Project 31: A tutorial on ask/tell mode for Ax

This project focuses on utilizing the open-source pack-
age AX [53] for Bayesian optimization in an asyn-
chronous, human-in-the-loop experimental setting, par-
ticularly applied to voltammetry. The researchers devel-
oped custom figures and explanations to elucidate the
complex interactions within the AX package, empha-
sizing its user-friendly nature while acknowledging its
potential complexity. The study explores various as-
pects of the optimization process, including strategy se-
lection, surrogate model choice, and search space defini-
tion. It demonstrates two primary approaches: a “cold
start” scenario, where optimization begins with no prior
data, and a “warm start” scenario for situations with
existing experimental data. For the cold start, the re-
searchers showcase the use of sequence generators like
Sobol sequences and random generators to initialize the
optimization campaign. The project also highlights the
package’s ability to handle real-world experimental con-
straints, such as marking broken electrodes to exclude
them from future suggestions. In the warm start sce-
nario, the researchers detail the process of translating
existing experimental workflows into the AX framework,
emphasizing the package’s automatic tracking of experi-
ments, results, and parameters. The study also notes the
inclusion of visualization tools within AX, though these
are not described in detail.

Project 32: Efficient Protein Mutagenisis using
Bayesian Optimization

This research project explored the application of
Bayesian optimization to protein mutagenesis, specifi-
cally aiming to optimize protein binding affinity to fen-
tanyl for potential use in biosensors. The team utilized
a pre-trained BERT language model [54], which predicts
ligand binding to proteins based on amino acid sequences
and SMILES strings. The methodology involved using
Bayesian optimization to iteratively select positions and
amino acids for mutation, starting with a protein that
already had affinity to fentanyl [55]. The researchers fo-
cused on residues within 5 angstroms of the ligand as po-
tential mutation sites.The team compared their Bayesian
optimization approach to a baseline using random mu-
tations. They analyzed the resulting mutations using
PyRosetta’s mutagenesis tool to identify potential new
positive interactions and clashes that could alter protein
conformation. The structural changes were further in-
vestigated using AlphaFold [56].
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Project 33: Bayesian Optimization for
Hyperspectral Co-heritability Search

This research project focuses on applying Bayesian Op-
timization (BO) to the field of crop genetics, specifically
for selecting optimal proxy data to train genomic predic-
tion models. The goal is to identify resilient crops that
can withstand factors like pests and climate change. The
study uses coheritability as a measure to determine the
best proxy traits for desired traits, treating it as a black-
box optimization problem.The researchers compared var-
ious BO methods using Gaussian Processes (GPs) against
random search for four different desired traits. Surpris-
ingly, they found that all BO methods performed sim-
ilarly to random search. However, a pre-trained prob-
abilistic model with a mixed multitask kernel outper-
formed standard BO approaches, identifying better proxy
data more quickly. The study concludes that Gaussian
Processes may not be the optimal choice for this par-
ticular problem, challenging the common use of Matérn
kernels and GPs as the default in Bayesian Optimization.
The researchers also criticize the widespread use of these
methods without proper justification. As part of their
contribution, the team has released their dataset [57] for
further research in this area.

Project 35: Tutorial for GAUCHE - A Library for
Gaussian Processes in Chemistry

This research project focuses on implementing input
warping for Bayesian Optimization within the Gauche li-
brary [58], which was previously developed by the team
and published at NeurIPS 2023. The primary innovation
of Gauche is the introduction of Gaussian process (GP)
kernels that enable modeling of discrete entities such as
SMILES strings, graphs, and bit vectors, which are com-
mon representations in molecular sciences. The motiva-
tion behind using Gaussian processes for Bayesian Op-
timization is their suitability for automated tasks where
fine-tuning for each problem is not feasible. GPs offer a
good balance between performance and simplicity, with
few trainable hyperparameters that can reliably converge
on each iteration of the Bayesian Optimization loop. This
makes them particularly attractive as surrogate models
compared to more complex alternatives like deep neural
networks, which might require careful monitoring dur-
ing training at each iteration. The Gauche library ex-
tends the applicability of GPs to discrete input spaces,
allowing for Bayesian Optimization over molecular rep-
resentations. The project team has developed a range
of tutorials and applications, including molecular prop-
erty prediction, protein fitness prediction, and sparse GP
regression, all available in the Gauche GitHub repository.

Project 36: Scalable Nonmyopic Bayesian
Optimization in Dynamic Cost Settings

This research project focuses on scalable Bayesian op-
timization in dynamic settings, addressing limitations of
previous approaches that rely on myopic acquisition func-
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tions and assume fixed cost structures. The researchers
introduce a novel method using non-myopic acquisition
functions [59] that incorporate a look-ahead mechanism
and dynamic cost functions. The project evaluates the
proposed algorithm, named HBE, through two main ex-
perimental setups. First, they use synthetic functions
across 14 different environments with varying dimensions
to test scalability. Second, they apply the method to a
real-world protein sequence design problem, aiming to
maximize a protein score. The researchers compare their
HBE algorithm against six other acquisition functions,
including state-of-the-art methods. To enhance practi-
cality, they integrate automatic hyperparameter tuning
to reduce the number of optimization parameters. While
specific results are not provided in the given context, the
approach aims to overcome suboptimal resource alloca-
tion in dynamic cost experiments and improve upon ex-
isting Bayesian optimization techniques.

Project 37: The Effects of Post-Modelling
Performance Metric Computation on the Efficiency
of Bayesian Optimizers

This research project explored modifications to the
Bayesian Optimization algorithm to enhance its effi-
ciency in solving real-world problems. The key innova-
tion was changing the order of objective calculation and
model fitting. Instead of calculating all objectives first
and then modeling each objective, the proposed method
only models the essential observations (e.g., yield) and
calculates the objectives after the modeling process. This
approach was tested using a simulation of a real-world
system based on kinetics discovered by Hornel, employ-
ing a plug flow reactor. The optimization aimed to maxi-
mize both space-time yield and E factor for the predicted
yield. The results demonstrated significant time savings
by computing objectives after modeling, primarily be-
cause only a single model for yield needed to be fitted
instead of separate models for space-time yield and E fac-
tor. While computational performance improved, there
was negligible impact on convergence speed. Interest-
ingly, the research suggests that this new approach might
potentially improve the efficiency of selection criteria by
allowing the fitting of a prior distribution biased towards
regions with more potential based on the objective func-
tion’s structure. In summary, the study found that fit-
ting objectives after modeling can lead to substantial in-
creases in computational performance, with the possibil-
ity of also improving hypervolume convergence efficiency.

Project 38: Bayesian methods in symbolic regression

This research project focused on enhancing symbolic
regression methods for physical science data sets using
Bayesian optimization techniques. The researchers ex-
plored two main approaches to improve the performance
of symbolic regression algorithms.First, they investigated
the impact of assigning varying importance to individ-
ual data points under data-limited conditions. Using the
Optuna framework, they implemented a tuning process
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for data point importance, which resulted in improved
predictive performance on a benchmark set compared to
treating all points equally. This approach could be par-
ticularly useful when dealing with experimental data of
uncertain quality. Second, they integrated prior knowl-
edge from Wikipedia’s known mathematical equations
into the loss function, combining it with the Bayesian
Information Criterion to statistically favor established
symbolic structures. This method was implemented as
a fitness function in the Symbolic Regression Julia li-
brary. While the researchers faced challenges in evaluat-
ing results due to numerical instability, both approaches
showed promise in improving symbolic regression perfor-
mance by incorporating uncertainty and prior informa-
tion. The team suggests that future work should adhere
more closely to the original paper’s methodology, using
the Bayesian information prior differences between equa-
tions as a probability metric for accepting mutational
operations in the symbolic regression process.

Project 39: Divide and Conquer - Local Gaussian
Processes to design Covalent Organic Frameworks
for Methane Deliverable Capacity

This research project focuses on improving Bayesian
Optimization (BO) for high-dimensional, large-scale
datasets, specifically applied to the design of Covalent
Organic Frameworks (COFs) for methane storage [60].
The researchers developed a novel approach combin-
ing unsupervised clustering with local Gaussian Process
(GP) models to enhance BO efficiency in the high data
regime. The method begins by using K-means cluster-
ing to partition the dataset into distinct clusters. A
portion of data from each cluster is then sampled to
train separate local GP models. An epsilon-greedy al-
gorithm is employed to determine which GP to train
next. The researchers applied this approach to a COF
dataset [61] containing over 70,000 2D and 3D structures,
assembled in silico from 666 organic linkers and four syn-
thetic routes. The objective was to maximize methane
storage performance, measured as deliverable capacity.
The results demonstrated that their divide-and-conquer
approach with local GP surrogates significantly outper-
formed a single GP model. While the single GP model
reached a maximum deliverable capacity of 2.74 in 60 it-
erations, the proposed method surpassed this maximum
within 5-10 iterations. Both methods retrained the GP
model after 20 iterations and used 5% of the data for
initial surrogate model training. This research highlights
the potential of using local GP surrogates in combina-
tion with unsupervised clustering to perform more effi-
cient Bayesian optimization in high-dimensional, large-
scale datasets.

Project 40: Optimizing Chemical Reaction
Conditions with Multi-Agent Systems Using LLM
and BO

This research project focuses on optimizing Suzuki re-
action conditions using Bayesian optimization enhanced
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by a multi-agent large language model (LLM) system.
The target dataset consists of Suzuki reactions, with the
goal of optimizing reaction ligands, bases, and solvents.
The researchers observed that while the target dataset
contains unique combinations of conditions, many of the
ligands are similar to those in existing reaction data
points, suggesting potential for knowledge transfer.The
developed system employs a multi-agent LLM approach
comprising three domain expert agents and a reaction
optimization agent. The process involves four steps:
(1) the reaction optimization agent assigns tags to do-
main agents, (2) gathers feedback from them, (3) uses
this feedback to warm-start initial data point genera-
tion and evaluation, and (4) acquires new data points
based on existing data. In demo experiments, the multi-
agent LLM system demonstrated improved performance,
reaching target reaction yields with fewer iterations com-
pared to traditional methods. Additionally, the multi-
agent approach showed an ability to avoid local max-
ima traps, which is particularly valuable given the chal-
lenging nature of reaction optimization due to data spar-
sity. This research highlights the potential of integrating
LLM-based multi-agent systems with Bayesian optimiza-
tion techniques to enhance reaction condition optimiza-
tion in chemistry.

Project 41: Retrieval Augmented Bayesian
Optimization

This research project, called RAMBO, combines
retrieval-augmented generation with Bayesian optimiza-
tion to enhance the initial point selection for new opti-
mization tasks. The system leverages existing data from
literature or internal databases to identify optimal start-
ing points for Bayesian optimization processes, particu-
larly in the context of chemical reactions.The RAMBO
pipeline begins by describing the design space of a re-
action to be optimized and determining which reaction
parameters should be explored first. It then queries avail-
able data to extract the most relevant data points and
assembles initial suggestions for the user. The system
was demonstrated using a Suzuki-Miura coupling reac-
tion as an example, which involves an extensive com-
binatorial space of different parameters. RAMBO can
describe the design space and limit it to available com-
pounds, providing starting parameters to optimize the
reaction. The project includes a demo interface where
users can input their reaction of interest, and the React
system in the backend queries and extracts relevant data
to form a reply containing necessary conditions to ini-
tiate the Bayesian optimization process. Users can also
explore the reasoning behind the system’s suggestions by
analyzing the data and reactions used to generate the
final answer.

Project 43: Bayesian Optimization Awesome List

This awesome list curates a collection of software, tu-
torials, research papers, and other resources related to
Bayesian optimization in materials science and chemistry.
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Project 44: Rank-based Bayesian Optimization

This research project focused on using ranking models
as surrogates in Bayesian optimization for materials dis-
covery, specifically comparing ranking-based and conven-
tional mean squared error (MSE) loss approaches. The
key motivation was that in experimental campaigns, find-
ing the best molecule is more important than accurately
predicting absolute property values, inspired by work on
molecular pool-based active learning [62]. The study em-
ployed a pairwise ranking loss (margin ranking loss) and a
simple fully-connected multi-layer perceptron with three
hidden layers and 100 nodes as the model architecture.
Experiments were conducted on multiple datasets, in-
cluding a solubility dataset (Delaney) and two datasets
from Ali et al. with varying roughness [63]. Results
showed that the ranking loss model consistently outper-
formed the MSE-based model and random baseline in
Bayesian optimization, acquiring more top-performing
candidates within fewer evaluations. Interestingly, all
models performed better on the smoother dataset, con-
trary to expectations. The study also found that model
performance did not always correlate with its effective-
ness as a surrogate in Bayesian optimization, as evi-
denced by the MSE model performing worse than the
random baseline on the rougher dataset. The research
highlights the potential of ranking-based models in over-
coming overfitting issues common in Bayesian optimiza-
tion with limited data points, particularly in materials
discovery applications.

Project 45: Bayesian Optimization for generality

This research introduces a novel approach to Bayesian
Optimization (BO) focused on finding general parame-
ters that perform well across multiple related tasks, a
common challenge in fields like chemistry where opti-
mal reaction conditions for various substrates are sought.
The researchers formulate this problem within the BO
framework, aiming to maximize a general response from
a set of multiple related objective functions.The pro-
posed algorithm operates in two steps: first selecting a
value in the optimization domain X, then choosing an
individual objective function to optimize for that value.
This approach aims to find the most general values in
X without exhaustively evaluating every individual sur-
face, thus minimizing evaluation costs. To support fur-
ther research in this area, the team adapted popular test
surfaces (Dixon-Price, Branin, and Beale) to be compati-
ble with their generality problem and made these bench-
mark problems available on Hugging Face. This contri-
bution allows other researchers to test and develop new
algorithms for generalized Bayesian Optimization, poten-
tially advancing the field and its applications in natural
sciences.
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