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Abstract
Bayesian optimisation is a sample-efficient search methodology that holds great promise for
accelerating drug and materials discovery programs. A frequently-overlooked modelling
consideration in Bayesian optimisation strategies however, is the representation of heteroscedastic
aleatoric uncertainty. In many practical applications it is desirable to identify inputs with low
aleatoric noise, an example of which might be a material composition which displays robust
properties in response to a noisy fabrication process. In this paper, we propose a heteroscedastic
Bayesian optimisation scheme capable of representing and minimising aleatoric noise across the
input space. Our scheme employs a heteroscedastic Gaussian process surrogate model in
conjunction with two straightforward adaptations of existing acquisition functions. First, we
extend the augmented expected improvement heuristic to the heteroscedastic setting and second,
we introduce the aleatoric noise-penalised expected improvement (ANPEI) heuristic. Both
methodologies are capable of penalising aleatoric noise in the suggestions. In particular, the ANPEI
acquisition yields improved performance relative to homoscedastic Bayesian optimisation and
random sampling on toy problems as well as on two real-world scientific datasets. Code is available
at: https://github.com/Ryan-Rhys/Heteroscedastic-BO

1. Introduction

Bayesian optimisation is proving to be a highly effective search methodology in areas such as drug discovery
[1–3], materials discovery [4–6], chemical reaction optimisation [7–9], robotics [10], sensor placement [11],
tissue engineering [12] and genetics [13]. Heteroscedastic aleatoric noise however, is rarely accounted for in
these settings despite being an important consideration for real-world applications. Aleatoric uncertainty
refers to uncertainty inherent in the observations (measurement noise) [14]. In contrast, epistemic
uncertainty corresponds to model uncertainty and may be explained away given sufficient data.
Heteroscedastic aleatoric noise refers to aleatoric noise which varies across the input domain and is a
prevalent feature of many scientific datasets; perhaps surprisingly not only experimental datasets, but also
datasets where properties are predicted computationally. One such source of heteroscedasticity in the
computational case might be situations in which the accuracy of first-principles calculations deteriorate as a
function of the chemical complexity of the molecule being studied [15].

In figure 1 we illustrate real-world sources of heteroscedasticity using the FreeSolv dataset of [16]. The
consequences of misrepresenting heteroscedastic noise as being homoscedastic, i.e. constant across the input
domain, are illustrated using a second dataset [17] in figure 2. The homoscedastic model can underestimate
noise in certain regions of the input space which in turn could induce a Bayesian optimisation scheme to
suggest values possessing large aleatoric noise. In an application such as high-throughput virtual screening
[18] the cost of misrepresenting noise during the screening process could lead to a substantial loss of time in
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Figure 1. (a) The density histogram of computational errors (kcal/mol) for the FreeSolv hydration energy dataset ([16]). The
computational errors in the hydration free energy arise from systematic errors in the force field used in alchemical free energy
calculations based on classical molecular dynamics (MD) simulations. (b) A similar density histogram for the experimental errors
where the source of uncertainty stems from the instrumentation used to obtain the measurement. The histograms are overlaid
with kernel density estimates.

Figure 2. Comparison of homoscedastic and heteroscedastic GP fits to the soil phosphorus fraction dataset [17].

material fabrication [19]. In this paper we present a heteroscedastic Bayesian optimisation algorithm capable
of both representing and minimising aleatoric noise in its suggestions. Our contributions are:

(a) The introduction of a novel combination of surrogate model and acquisition function designed to
minimise heteroscedastic aleatoric uncertainty.

(b) A demonstration of our scheme’s ability to outperform naive schemes based on homoscedastic Bayesian
optimisation and random sampling on toy problems as well as two real-world scientific datasets.

(c) The provision of an open-source implementation.

The paper is structured as follows: section 2 introduces related work on heteroscedastic Bayesian
optimisation. Section 3 provides background on Bayesian optimisation and homoscedastic Gaussian process
(GP) surrogate models. Section 4 provides background on the heteroscedastic GP surrogate model used in
this work and introduces the novel heteroscedastic augmented expected improvement (HAEI) and aleatoric
noise-penalised expected improvement (ANPEI) acquisitions functions. Section 5 considers experiments on
synthetic and scientific datasets possessing heteroscedastic noise where the goal is to be robust to, i.e.
minimise, aleatoric noise in the suggestions. Section 6 presents an ablation study on noiseless tasks as well as
tasks with homoscedastic and heteroscedastic noise in order to determine whether there is a detrimental
effect to using a heteroscedastic surrogate when the noise properties of the problem are a priori unknown.
Section 7 concludes with some limitations of the approach presented as well as fruitful sources for future
work.
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2. Related work

The most similar work to our own is that of [20] where experiments are reported on a heteroscedastic
Branin-Hoo toy function using the variational heteroscedastic GP approach of [21]. This work defines and
optimises a robustness index, making a compelling case for penalisation of aleatoric noise in real-world
Bayesian optimisation problems. A modification to expected improvement (EI), expected risk improvement
is introduced in [22] and is applied to problems in robotics where robustness to aleatoric noise is desirable.
In this framework however, the relative weights of performance and robustness cannot be tuned [20].
References [23, 24] implement heteroscedastic Bayesian optimisation but do not introduce an acquisition
function that penalises aleatoric noise [25, 26] consider the related problem of safe Bayesian optimisation
through implementing constraints in parameter space. In this instance, the goal of the algorithm is to enforce
a performance threshold for each evaluation of the black-box function. Recently, the winners of the 2020
NeurIPS Black-Box Optimisation Competition applied non-linear output transformations in their solution
to tackle heteroscedasticity. The authors however are not interested in explicitly penalising aleatoric noise in
this case. In terms of acquisition functions, [27, 28] propose principled approaches to handling aleatoric
noise in the homoscedastic setting that could be extended to the heteroscedastic setting. Our primary focus
in this work however, is to highlight that heteroscedasticity in the surrogate model is beneficial and so an
examination of a subset of acquisition functions is sufficient for this purpose. We take the opportunity here
to note earlier unpublished workshop versions of this paper which consider the same problem [29, 30].

3. Background

3.1. Bayesian optimisation
Bayesian optimisation [31, 32, 35] solves the global optimisation problem defined as

x∗ = argmin
x∈X

f(x)

where x∗ is the global optimiser of a black-box function f : X →Y . X is the design space and is typically a
compact subset of Rd. What makes this optimisation problem practically relevant in applications are the
following properties:

(a) Black-Box Objective: We do not have the analytic form of f. We can however evaluate f pointwise any-
where in the design space X .

(b) Expensive Evaluations: Choosing an input location x and evaluating f(x) takes a very long time.
(c) Noise: The evaluation of a given x is a noisy process. In addition, this noise may vary across X , making

the underlying process heteroscedastic.

We have a datasetD = {(xi, ti)}ni=1 consisting of observations of the black-box function f and fit a
probabilistic surrogate model to these datapoints. We then leverage the predictive mean as well as the
uncertainty estimates of the surrogate model to guide the acquisition of the next data point xn+1 according to
a heuristic known as an acquisition function. In Bayesian optimisation, exact GPs are the most popular
choice of surrogate model because of their ability to represent posterior uncertainty without resorting to
approximate Bayesian inference.

3.2. Gaussian processes
In the terminology of stochastic processes we may formally define a GP as follows:

Definition 1. A GP [33] is a collection of random variables, any finite number of which have a joint Gaussian
distribution.

GPs can be used to set a prior over functions in Bayesian modelling applications. In this setting, the
random variables consist of function values f(x) at different locations x within the design space. The GP is
characterised by a mean function

m(x) = E[f(x)]

and a covariance function

k(x,x′) = E[( f(x−m(x))( f(x′)−m(x′))].

3
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The process is written as follows

f(x)∼ GP
(
m(x),k(x,x′)

)
.

In our experiments, the prior mean function will be set to the empirical mean of the data. The covariance
function or kernel computes the pairwise covariance between two random variables (function values). The
covariance between a pair of output values f(x) and f(x ′) is a function of an input pair x and x ′. As such, the
kernel encodes smoothness assumptions about the latent function being modelled. The most widely-utilised
kernel is the squared exponential (SE) kernel

kSQE(x,x
′) = σ2

f · exp
(−∥x− x ′∥2

2ℓ2

)
(1)

where σ2
f is the signal amplitude hyperparameter (vertical lengthscale) and ℓ is the (horizontal) lengthscale

hyperparameter. Although equation (1) is written with a single lengthscale shared across dimensions, for
multidimensional input spaces we optimise a lengthscale per dimension. For consistency, we use the SE
kernel in all experiments reported in the main paper. In appendix C we compare the performance of different
kernels on a set of synthetic optimisation functions. For a more detailed introduction to GPs the reader is
referred to [33].

4. Heteroscedastic Bayesian optimisation

We wish to perform Bayesian optimisation whilst minimising input-dependent aleatoric noise. In order to
represent input-dependent aleatoric noise, a heteroscedastic surrogate model is required.

4.1. The most likely heteroscedastic Gaussian process
We adopt the most likely heteroscedastic Gaussian process (MLHGP) approach of [34], and for consistency,
we use the same notation as the source work in our presentation. We have a datasetD = {(xi, ti)}ni=1 in
which the target values ti have been generated according to ti = f(xi)+ ϵi. We assume independent Gaussian
noise terms ϵi ∼N (0,σ2

i ) with variances given by σ2
i = r(xi). In the heteroscedastic setting r is typically a

non-constant function over the input domain x. In order to perform Bayesian optimisation, we wish to
model the predictive distribution P(t∗ | x∗1 , . . . ,x∗q ) at the query points x∗1 , . . . ,x∗q . Placing a GP prior on f and
taking r(x) as the assumed noise function, the predictive distribution is multivariate GaussianN (µ∗,Σ∗)
with mean

µ∗ = E[t∗] = K∗(K+R)−1t

and covariance matrix

Σ∗ = var[t∗] = K∗∗ +R∗ −K∗(K+R)−1K∗T,

where K ∈ Rn×n, Kij = k(xi,xj), K∗ ∈ Rq×n, K∗
ij = k(x∗i ,xj), K

∗∗ ∈ Rq×q, K∗∗
ij = k(x∗i ,x

∗
j ), t= (t1, t2, . . . , tn)T,

R= diag(r)with r= (r(x1), r(x2), . . . , r(xn))T, and R∗ = diag(r∗)with r∗ = (r(x∗1 ), r(x
∗
2 ), . . . , r(x

∗
q ))

T.
The MLHGP algorithm [34] executes the following steps:

(a) Estimate a homoscedastic GP, G1 on the datasetD = {(xi, ti)}ni=1.
(b) Given G1, we estimate the empirical noise levels for the training data using zi = log(var[ti,G1(xi,D)])

where var[ti,G1(xi,D)]≈ 1
s

∑s
j 0.5 (ti − t ji )

2 with t ji a sample from the predictive distribution induced
by the GP at xi, forming a new datasetD ′ = {(xi,zi)}ni=1.

(c) Estimate a second GP, G2 onD ′.
(d) Estimate a combined GP, G3 onD using G2 to predict the logarithmic noise levels ri.
(e) If not converged, set G3 to G1 and repeat.

In essence, the defining characteristic of the MLHGP approach is that G1 learns the latent function and
G2 learns the noise function.

4.2. Bayesian optimisation with aleatoric noise penalisation
Our heteroscedastic Bayesian optimisation problem may be framed as

x∗ = argmin
x∈χ

h(x),

4
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where the black-box objective h, to be minimised has the form

h(x) = αf(x)+ (1−α)g(x),

where f(x) is the black-box function of the principal objective i.e. the objective corresponding to classical
Bayesian optimisation where noise is not optimised, and g(x) is the latent heteroscedastic noise function
which governs the magnitude of the noise at a given input location x. α is a parameter chosen, for the
purposes of evaluation, by a domain expert that trades off the weight of the principal objective relative to the
noise objective. It is worth noting that α is a parameter that affects only the evaluation of an algorithm and
not the execution. The evaluation criteria however, will dictate the optimal hyperparameters of the
acquisition function.

4.3. Heteroscedastic acquisition functions
We investigate extensions of the EI [35] acquisition criterion, the form of which may be written in terms of
the targets t and the incumbent best objective function value, η, found so far as

EI(x) = E
[
(η− t)+

]
=

ˆ ∞

−∞
(η− t)+ p(t |x)dt

where p(t |x) is the posterior predictive marginal density of the objective function evaluated at x.
(η− t)+ ≡max(0, η− t) is the improvement over the incumbent best objective function value η.
Evaluations of the objective are noisy in all of the problems we consider and so we use EI with plug-in [36],
the plug-in value being the GP predictive mean [37].

We propose two extensions to the EI criterion. The first is an extension of the augmented expected
improvement (AEI) criterion

AEI(x) = E
[
(η− t)+

](
1− σn√

var[t] +σ2
n

)
,

of [38] where σn is the fixed aleatoric noise level. AEI is introduced as a heuristic for the optimisation of
noisy functions. EI is recovered in the case that σ2

n = 0 and in the case that σ2
n > 0 AEI operates as a rescaling

of the EI acquisition function, penalising test locations where the GP predictive variance is small relative to
the fixed noise level σ2

n. We extend AEI to the heteroscedastic setting by exchanging the fixed aleatoric noise
level with the input-dependent one:

HAEI(x) = E
[
(η− t)+

](
1−

γ
√

r(x)√
var[t] + γ2r(x)

)
, (2)

where r(x) is the predicted aleatoric uncertainty at input x under the MLHGP and var[t] is the predictive
variance of the MLHGP at input x. γ in this instance is defined to be a positive penalty parameter for regions
with high aleatoric noise.

Proposition 1 (Limit of Large Epistemic Uncertainty). The HAEI acquisition function reduces to EI when the ratio of
epistemic uncertainty to aleatoric uncertainty is much greater than γ2.

Proof. Let k= var[t]
r(x) denote the ratio of epistemic to aleatoric uncertainty at an arbitrary input location x.

Dividing the numerator and the denominator of the second term in the second factor of equation (2) by√
r(x) yields

HAEI(x) = EI(x)

(
1− γ√

k+ γ2

)
. (3)

Taking the limit analytically as k tends to infinity and assuming finite γ

lim
k→∞

EI(x)

(
1− γ√

k+ γ2

)
= EI(x),

recovers the EI acquisition.

5
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Figure 3. The HAEI scaling factor S(k), now written as a function of k for different values of γ. When k, the ratio of epistemic to
aleatoric uncertainty is small, the scaling factor goes to zero to reflect the penalty for regions of high aleatoric uncertainty.
γ controls the decay rate of this penalty. Also shown is the linear approximation to the scaling factor for γ= 10.

Proposition 2 (Limit of Large Aleatoric Uncertainty). TheHAEI acquisition function goes to zero as the ratio of epistemic
uncertainty to aleatoric uncertainty goes to zero.

Proof. Taking the limit as k tends to zero in equation (3) yields

lim
k→0

EI(x)

(
1− γ√

k+ γ2

)
= 0.

Remark. In the limit of large aleatoric uncertainty there is an approximation that is linear in k for the HAEI
scaling factor.

Letting S(k) = 1− γ√
k+γ2

such that HAEI= EI(x)S(k), consider the MacLaurin expansion of S(k),

S(k) = S(0)+ S′(0)k+
S′′(0)

2!
k2 +

S′′′(0)

3!
k3 + . . . .

Dropping terms of O(k2) and higher we obtain

S(k)≈ k

2γ2
.

This approximation may be used when k is small relative to γ and could provide guidance in setting the γ
parameter if prior knowledge about k and the desired trade-off between the principal and noise objectives is
available. In figure 3 we provide insight into the effect that different values of γ will have on the scaling factor
S(k).

In addition to HAEI, we propose a simple modification to EI that explicitly penalises regions of the input
space with large aleatoric noise. We call this acquisition function ANPEI and denote it

ANPEI= βEI(x)− (1−β)
√

r(x), (4)

where β is a scalarisation constant. In the multiobjective optimisation setting a particular value of β will
correspond to a point on the Pareto frontier. We showcase the advantages of both HAEI and ANPEI
acquisition functions in conjunction with the MLHGP surrogate model in section 5.

6
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5. Experiments on robustness to aleatoric uncertainty

5.1. Implementation
Experiments were run using a custom NumPy [39] implementation of GP regression and MLHGP
regression. All code to reproduce the experiments is available at https://github.com/Ryan-Rhys/
Heteroscedastic-BO. The SE kernel was chosen as the covariance function for both the homoscedastic GP as
well as G1 and G2 of the MLHGP. Across all datasets, the lengthscales, ℓ, of the homoscedastic GP were
initialised to 1.0 for each input dimension. The signal amplitude σ2

f was initialised to a value of 1.0. The
lengthscale, ℓ, of G2 of the MLHGP [34] was initialised to 1.0, the initial noise level of G2 was set to 1.0. The
EM-like procedure required to train the MLHGP was run for ten iterations and the sample size required to
construct the variance estimator producing the auxiliary dataset was 100. All standard error confidence
bands are computed using 50 independent random seed initialisations. Hyperparameter values, including
the noise level of the homoscedastic GP, were obtained by optimising the marginal likelihood using the scipy
implementation of the L-BFGS-B optimiser [40], taking the best of 20 random restarts. The objective
function is

h(x) = αf(x)− (1−α)g(x)

for the one-dimensional sin wave experiment which is a maximisation problem and as such has a subtractive
penalty for regions of large noise. For the remaining experiments, which are minimisation problems, the
objective is

h(x) = αf(x)+ (1−α)g(x). (5)

The sin wave and Branin-Hoo tasks are initialised with 25 and 100 data points respectively drawn uniformly
at random within the bounds of the design space. The soil and FreeSolv experiments are initialised with 36
and 129 data points respectively drawn uniformly at random from the datasets. α is set to 0.5 for all
experiments while β is set to 0.5, 1

11 , 0.5 and 0.5 for the sin, Branin-Hoo, soil and FreeSolv experiments. γ is
set to 1, 500, 1 and 1 for the sin, Branin-Hoo, soil and FreeSolv experiments. We run five acquisition
functions in all experiments: random sampling, homoscedastic EI, AEI, HAEI and ANPEI. Homoscedastic EI
is included as a baseline to demonstrate the difference consideration of aleatoric noise yields in the
optimisation of the objective. AEI is included to demonstrate the difference consideration of heteroscedastic
aleatoric noise yields and random sampling is included as a baseline as it is known to be highly competitive
with Bayesian optimisation in noisy settings.

5.2. Heteroscedastic sin wave function
The objective function has the form

h(x) = f(x)− g(x)

where f(x) = sin(x)+ 0.2(x)+ 3 and g(x) = 0.5(x). In this instance α from section 5.1 has a setting of 0.5 but
we omit it explicitly as the objectives have equal weight. Over the course of the experiment samples

yi = f(xi)+ g(xi)ϵ, ϵ∼N (0,1)

are observed. The problem setup is depicted in figures 4 and 5. The Bayesian optimisation problem is
constructed such that the first maximum in figure 4(a) is to be preferred as samples from this region of the
input space will have low aleatoric noise. The black-box objective in figure 4(c) illustrates this trade-off. In
figure 6 we compare the performance of all surrogate model/acquisition function combinations. We observe
the low aleatoric noise-seeking behaviour of HAEI and ANPEI on g(x) as well as their ability to optimise the
composite objective h(x).

5.3. Heteroscedastic Branin-Hoo function
In the second experiment we consider the objective

h(x) = f(x)+ g(x)

with an additive penalty because the task is a minimisation problem and an α setting of 0.5 for equal-weight
objectives.

f(x) =
1

51.95

[(
x̄2 −

5.1 x̄21
4 π2

+
5 x̄1
π

− 6

)2

+

(
10− 10

8 π

)
cos(x̄1)− 44.81

]
(6)
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Figure 4. Illustrative toy problem. The latent function in (a) is corrupted with heteroscedastic Gaussian noise according to the
function in (b) where g(x) is a constant multiplier of a sample from a standard Gaussian. The combined objective is given in
(c) and is obtained by subtracting the noise function from the latent function.

Figure 5. Noisy samples yi = f(xi)+ g(xi)ϵ from the heteroscedastic sin wave function.

Figure 6. Comparison of heteroscedastic and homoscedastic Bayesian optimisation on the sin wave problem. (a) Shows the
optimisation of h(x) = f(x)− g(x) (higher is better) whereas (b) shows the values g(x) obtained over the course of the
optimisation of h(x). This latter plot demonstrates the propensity of ANPEI to seek low aleatoric noise solutions.

8
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Figure 7. Branin-Hoo Optimisation Problem. The latent function in (a) is corrupted by heteroscedastic Gaussian noise function
according to the function in (b). The combined objective function is given in (c) and is obtained by summing the functions in
(a) and (b). The sum is required to penalise regions of large aleatoric noise because the objective is being minimised.

Figure 8. Comparison of heteroscedastic and homoscedastic Bayesian optimisation on the Branin-Hoo problem. (a) Shows the
optimisation of h(x) = f(x)+ g(x) (lower is better) whereas (b) shows the values g(x) obtained over the course of the
optimisation of h(x).

with x̄1 = 15x1 − 5, x̄2 = 15x2 and x= (x1,x2) is the standardised Branin-Hoo function introduced in [36].
The noise function g(x) is in this instance

g(x) = 15− 8x1 + 8x22. (7)

Samples are again generated according to

yi = f(xi)+ g(xi)ϵ, ϵ∼N (0,1).

The problem setup is shown in figure 7 and the performance of all surrogate model/acquisition function
pairs is depicted in figure 8. The gulf in performance between the heteroscedastic and homoscedastic
surrogate models is more pronounced in this case because the noise function is more severe relative to the sin
wave problem.

5.4. Soil phosphorus fraction optimisation
In this experiment we consider the optimisation of the phosphorus fraction of soil. Soil phosphorus is an
essential nutrient for plant growth and is widely used as a fertiliser in agriculture. While the amount of arable
land worldwide is declining, global population is expanding concomitantly with food demand. As such,
understanding the availability of plant nutrients that increase crop yield is a topic worthy of attention. To this
end, [17] have curated a dataset on soil phosphorus, relating phosphorus content to variables such as soil
particle size, total nitrogen, organic carbon and bulk density. We choose to study the relationship between

9
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Figure 9. Comparison of heteroscedastic and homoscedastic Bayesian optimisation on the soil phosphorus fraction optimisation
problem. (a) Shows the optimisation of h(x) = f(x)+ g(x) (lower is better) where x is the dry bulk density of the soil. (b) Shows
the values g(x) obtained over the course of the optimisation of h(x).

bulk soil density and the phosphorus fraction, the goal being to minimise the phosphorus content of soil
subject to heteroscedastic noise. In lieu of performing a formal test for heteroscedasticity, we provide
evidence that there is heteroscedasticity in the dataset by comparing the fits of a homoscedastic GP and the
MLHGP in figure 2 and provide a predictive performance comparison based on negative log predictive
density values in appendix A.

In this problem, we do not have access to a continuous-valued black-box function or a ground truth
noise function. As such, the surrogate models were initialised with a subset of the data and the query
locations selected by Bayesian optimisation were mapped to the closest datapoints in the heldout data. The
following kernel smoothing procedure was used to generate pseudo ground-truth noise values:

(a) Fit a homoscedastic GP to the full dataset.
(b) At each point xi, compute the corresponding squared error s2i = (yi −µ(xi))2.
(c) Estimate variances by computing a moving average of the squared errors, where the relative weight of

each s2i was assigned with a Gaussian kernel.

The performances of heteroscedastic and homoscedastic Bayesian optimisation are compared in figure 9.
Given that regions of low phosphorus fraction coincide with regions of small aleatoric noise, we apply an α
value of 1

6 to the composite objective h(x) to admit a finer granularity for distinguishing between degrees of
low aleatoric noise in the solutions.

5.5. Molecular hydration free energy optimisation
We perform a retrospective virtual screening experiment with the aim of identifying molecules with
favourable hydration free energy, a property important in determining the binding affinity of a drug
candidate. Experiments were performed with an initialisation of 129 out of the 642 molecules in the FreeSolv
dataset [16, 41] over ten iterations of data collection. Unlike the soil phosphorus fraction dataset, ground
truth measurement error (aleatoric noise g(x)) values are available for the FreeSolv dataset. The remaining
513 molecules were reserved as a heldout set where at each iteration of data collection one of the heldout
molecules was selected. Chemical fragments computed using RDKit [42] were used as the molecular
representation based on the fact that these global features, unlike local Morgan fingerprints, act as good
predictors of the hydration free energy. The fragment features were projected down to 14 components using
principal component analysis, retaining more than 90% of the variance on average across random trials. The
results are shown in figure 10. Compared to previous experiments, the noise is smaller in this instance
relative to the magnitude of the hydration free energy (Signal-to-noise ratio of approximately 10) and as such
the heteroscedastic modelling problem is more difficult, leading to only very marginal gains in obtaining low
noise solutions. While ANPEI obtains the lowest objective function value over the Bayesian optimisation
trace, the results are unlikely to be statistically significant according to the standard error bands.
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Figure 10. Comparison of heteroscedastic and homoscedastic Bayesian optimisation on the FreeSolv hydration free energy
optimisation problem. (a) Shows the optimisation of h(x) = f(x)+ g(x) (lower is better) where x is the fragment set of molecular
descriptors, f(x) is the hydration free energy and g(x) is the aleatoric noise. (b) Shows the values g(x) obtained over the course of
the optimisation of h(x).

Figure 11. Performance of ANPEI and HAEI plotted for different values of the β and γ hyperparameters respectively. Smaller
values of β encourage avoidance of regions of high aleatoric noise whilst larger values of γ encourage avoidance of regions of high
aleatoric noise.

5.6. Heteroscedastic acquisition function hyperparameters
The β hyperparameter of ANPEI in equation (4) and the γ hyperparameter of HAEI in equation (3) are
designed to modulate the avoidance of aleatoric noise in the acquisitions. In figure 11 we offer some intuition
as to the effect of various settings of β and γ by examining the heteroscedastic Branin-Hoo function
introduced in section 5.3. The results demonstrate that the performance of the algorithms is strongly
dependent on the setting of the β hyperparameter for ANPEI whereas γ is less influential on the performance
of HAEI. It is worth noting in figure 11(b) that if too large a value of γ is chosen the principal objective f(x)
may be compromised through overly aggressive avoidance of aleatoric noise. In practice choosing the value
of β in line with the value of the evaluation criterion parameter α in equation (5) is likely to be a sensible
approach i.e. if the noise objective is more important relative to the principal objective by a factor of 10 then
the value of β should be 1

11 .
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5.7. Robustness experiments summary
The experiments of this section provide strong evidence that modelling heteroscedasticity in Bayesian
optimisation is a useful approach for problems in which there is a strong degree of aleatoric noise present.
The ANPEI acquisition tends to outperform HAEI on the majority of the tasks where there is a small degree
of aleatoric noise whilst the acquisitions are more evenly matched when the extent of the aleatoric noise is
high. The outstanding questions for these methods however, is how well they perform on tasks where
heteroscedastic noise is not present. Such a situation may easily arise for real-world problems where the noise
properties of the tasks are a prior unknown and as such, it is important to ascertain whether there is a
deleterious effect on performance in noiseless and homoscedastic noise settings.

6. Ablation study on noiseless, homoscedastic noise and heteroscedastic noise tasks

In this section we perform an ablation study where components of the ablation constitute different noise
properties. We examine the noiseless case as a base task before adding first a homoscedastic noise component
and second, a heteroscedastic noise component. Additionally, we examine the effect of the size of the
initialisation grid on performance in the heteroscedastic noise tasks.

6.1. Ablation
The ablation study makes use of three synthetic optimisation functions: The Branin-Hoo function, the
Hosaki function and the Goldstein-Price function. The form of the Branin-Hoo function is the same
standardised Branin-Hoo function introduced in equation (6) with heteroscedastic noise function given in
equation (7). The Hosaki function, defined on the domain x1,x2 ∈ [0,5], is

Hosaki(x1,x2) =
(
1− 8x1 + 7x1

2 − 7

3
x1

3 +
1

4
x1

4
)
x2

2 exp(−x2).

To facilitate the GP fit, the Hosaki function is subsequently standardised by its mean (0.817) and standard
deviation (0.573). The noise function is

gHosaki(x1,x2) = 50 · 1

(x1 − 3.5)2 + 2.5
· 1

(x2 − 2)2 + 2.5
. (8)

The logarithmic Goldstein-Price function [36] is

G-P(x1,x2) =
1

2.427

[
log
(
[1+(x̄1 + x̄2 + 1)2(19− 14x̄1 + 3x̄21 − 14x̄2 + 6x̄1x̄2 + 3x̄22)] (9)

[30+(2x̄1 − 3x̄2)
2
(18− 32x̄1 + 12x̄21 + 48x̄2 − 36x̄1x̄2 + 27x̄22)]

)
− 8.693

]
(10)

where x̄1 = 4x1 − 2 and x̄2 = 4x2 − 2. The Goldstein-Price noise function is

gG-P(x1,x2) =
3

2
· 1

(x1 − 0.5)2 + 0.2
· 1

(x2 − 0.3)2 + 0.3
. (11)

For clarity, only the results of the Hosaki function are presented in the main paper with the Branin-Hoo and
Goldstein-Price results presented in B. The Hosaki function is visualised in figure 12. The value of β for
ANPEI is set to 0.5 and the value of γ is set to 500 for all Hosaki function experiments.

6.1.1. Noiseless case
In this case, the synthetic functions do not possess any observation noise and the optimisation function
corresponds to the situation in figure 12(a). Nine points sampled uniformly at random are used for
initialisation and the results are displayed in figure 13. As expected, all Bayesian optimisation methods
outperform random search in the noiseless case. In this example it is unclear as to whether heteroscedastic
Bayesian optimisation methods are detrimental as HAEI performs best whereas ANPEI performs worst.

6.1.2. Homoscedastic noise case
In this case the functions are subject to homoscedastic noise of the form 25ϵ where epsilon is noise sampled
from a standard GaussianN (0,1). The GP surrogates are again initialised with nine points. The results are

12
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Figure 12. (a) The latent Hosaki Function f(x) together with (b) its heteroscedastic noise function g(x) and (c) the objective
function f(x)+ g(x).

Figure 13. Hosaki function noiseless case. All Bayesian optimisation methods outperform random search. HAEI performs best
and ANPEI performs worst.

displayed in figure 14. The Bayesian optimisation methods perform worse in the homoscedastic noise case
relative to the noiseless case although the rank order of the methods mirrors that of the noiseless case.

6.1.3. Heteroscedastic noise
In the heteroscedastic noise case the Hosaki function is subject to the noise function given in equation (8)
and visualised in figure 12. 144 points were used to initialise the GP surrogates. The results are shown in
figure 15. In this instance, given that the extent of heteroscedastic noise is very strong (relative to the
homoscedastic noise case), random search is highly competitive with the Bayesian optimisation methods.
ANPEI however, is the best-performing algorithm. The large number of initialisation points chosen for this
experiment reflects one limitation of the heteroscedastic surrogate approach; for the MLHGP to effectively
learn a decomposition of the function into signal and noise components it needs access to more samples. As
such, this merits an investigation into the effect of the number of samples on the performance of the
heteroscedastic acquisitions.

6.2. Effect of initialisation set size
The effect of the size of the initialisation set on the heteroscedastic Branin-Hoo task is investigated in
figure 16. The value of β used for ANPEI is 1

11 and the value of γ used for HAEI is 500. The performance of
the heteroscedastic acquisitions ANPEI and HAEI is observed to improve as the size of the initialisation set
increases. In contrast, the homoscedastic methods EI and AEI do not improve on obtaining access to more
samples as they are unable to model the heteroscedastic noise component of the task.
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Figure 14. Hosaki function homoscedastic noise case. All Bayesian optimisation methods outperform random search with HAEI
the best and ANPEI the worst.

Figure 15. Comparison of heteroscedastic and homoscedastic Bayesian optimisation on the heteroscedastic 2D Hosaki function.
(a) Shows the optimisation of h(x) = f(x)+ g(x) (lower is better) where g(x) is the aleatoric noise. (b) Shows the values g(x)
obtained over the course of the optimisation of h(x).

6.3. Conclusions from ablation experiments
Synthesising the results from the additional ablation experiments in B some trends may be observed:

(a) All Bayesian optimisation methods outperform random search in the noiseless case and homoscedastic
noise cases on aggregate across the three synthetic functions.

(b) On aggregate there is no significant difference between Bayesian optimisation methods in the noiseless or
homoscedastic noise cases (HAEI marginally outperforms ANPEI on 2/3 noiseless tasks and 2/3 homos-
cedastic noise tasks).

(c) The heteroscedastic acquisitions ANPEI and HAEI perform competitively on the noiseless and homos-
cedastic noise tasks most likely because the MLHGP is capable of effecting nonstationary behaviour by
‘fantasising’ heteroscedastic noise. As such, the MLHGP surrogate may be achieving enhanced flexibility
relative to the homoscedastic GP in this setting.

14



Mach. Learn.: Sci. Technol. 3 (2022) 015004 R-R Griffiths et al

Figure 16. The effect of the initialisation set size on the heteroscedastic Branin-Hoo function. The performance of heteroscedastic
acquisitions ANPEI and HAEI increases as they are given access to more samples. An excess of samples do not help the
homoscedastic Bayesian optimisation methods as they are unable to model the heteroscedastic noise component.

(d) The heteroscedastic acquisitions tend to outperform other Bayesian optimisation approaches on the het-
eroscedastic noise tasks although crucially this depends on the size of the initialisation set. In order to
detect heteroscedastic noise the MLHGP surrogate needs access to more samples relative to the noiseless
and homoscedastic cases.

(e) ANPEI outperforms HAEI.

In summary, the experiments would appear to show that there is no significant downside to employing a
heteroscedastic surrogate and acquisition function on noiseless tasks or tasks with homoscedastic noise save
for the increased training time for the model.

7. Conclusions

We have presented an approach for performing Bayesian optimisation with the explicit goal of minimising
aleatoric noise in the suggestions. We posit that such an approach can prove useful for the natural sciences in
the search for molecules and materials that are robust to experimental measurement noise. The synthetic
function ablation study highlights no particular downside to the use of the MLHGP in conjunction with
ANPEI or HAEI in cases where the noise structure of the problem is a priori unknown i.e the black-box
optimisation problem is either noiseless or homoscedastic. Nonetheless, we anticipate that this type of
approach may be particularly relevant for the experimental natural sciences where noiseless objectives or
those with homoscedastic noise are highly uncommon. In terms of concrete recommendations on when to
apply the algorithm, we foresee the best performance in situations where the user has access to a
moderately-sized initialisation set in order to provide the MLHGP with enough samples to distinguish
heteroscedastic noise from intrinsic function variability. There are a number of possible extensions to the
current approach which may facilitate its application to high-dimensional datasets and act as fruitful sources
for future work:

(a) Surrogate Model: One disadvantage of the MLHGP model is the lack of convergence guarantees for the
EM-like procedure required for fitting. Various other forms of heteroscedastic GP exist [43–49] and have
demonstrated success in modelling applications [50–53]. Of particular interest for real-world problems
are scalable heteroscedastic GPs [54, 55] which could circumvent the computationally-intensive bottle-
neck of fitting multiple exact GPs as a subroutine of the MLHGP Bayesian optimisation procedure.

(b) Advances in Surrogate Model Machinery: Advances in areas such as efficient sampling of GPs [56] are
liable to yield improvements to sampled-based acquisition functions such as Thompson sampling [57]
while fully Bayesian approaches to hyperparameter estimation for sparse GPs [58] are liable to yield
improvements in model fitting procedures.

(c) Scalable Bayesian Optimisation: Scalable Bayesian optimisation can also be enabled via dimensionality
reduction techniques [59–61]. Such approaches, when combined with efficient libraries [62, 63] could
facilitate heteroscedastic Bayesian optimisation in high-dimensional settings.

(d) Acquisition Function Optimisation: Recent developments in acquisition function optimisation includ-
ing Monte Carlo reformulations [64, 65], compositional optimisers [65, 66] and tight relaxations [67] of
common acquisition functions have the potential to yield gains in empirical performance.
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(e) Data Transformation: Input-warping [68] and output transformations [69] have recently shown success
towards addressing heteroscedastic datasets.

(f) Approaches for Molecular Bayesian Optimisation: In relation to molecules, the use of tailored GP ker-
nels such as Tanimoto kernels [70, 71] and more expressive dimensionality reduction techniques [72]
could lead to performance gains and enhanced scalability respectively.

(g) Exploration in the Noise Objective: Incorporating exploration in the noise objective in the multi-
objective setting as in [22].

Lastly, a further use-case of the machinery developed in this paper is obtained by turning the noise
minimisation problem into a noise maximisation problem. As an example, in materials discovery, we may
derive benefit from being antifragile [73] towards (i.e. derive benefit from) high aleatoric noise. In an
application such as the search for performant perovskite solar cells, we are faced with an extremely large
compositional space, with millions of potential candidates possessing high aleatoric noise for identical
reproductions [74]. In this instance we may want to guide search towards a candidate possessing a high
photoluminescence quantum efficiency with high aleatoric noise. If the cost of repeating material syntheses is
small relative to the cost of the search, the large aleatoric noise will present opportunities to synthesise
materials possessing efficiencies far in excess of their mean values.
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Appendix A. Heteroscedasticity of the soil phosphorus fraction dataset

Table A1 is used to demonstrate the efficacy of modelling the soil phosphorus fraction dataset using a
heteroscedastic GP. The heteroscedastic GP outperforms the homoscedastic GP on prediction based on the
metric of negative log predictive density (NLPD)

NLPD=
1

n

n∑
i=1

− logp(ti|xi)

which penalises both over and under-confident predictions.

Appendix B. Additional ablation experiments

In this section we present the ablation results on noiseless, homoscedastic and heteroscedastic noise tasks in
line with section 6 of the main paper.

B.1. Goldstein-Price function
The form of the Goldstein-Price function is given in equation (9) with noise function in equation (11). The
function is visualised in figure B1. Nine data points are used for initialisation in the noiseless and
homoscedastic noise cases whereas 100 data points are used for initialisation in the heteroscedastic noise
case. β is set to 0.5 for the noiseless and homoscedastic noise tasks and 1

11 for the heteroscedastic noise task. γ
is set to 500 for all experiments.

B.1.1. Noiseless case
The results of the noiseless case for Goldstein-Price are given in figure B2. All Bayesian optimisation methods
outperform random search with ANPEI best and HAEI second best.

16



Mach. Learn.: Sci. Technol. 3 (2022) 015004 R-R Griffiths et al

Table A1. Comparison of NLPD values on the soil phosphorus fraction dataset. Standard errors are reported for ten independent
train/test splits. Lower scores are better.

Soil phosphorus fraction dataset GP Het GP

NLPD 1.35± 1.33 1.00± 0.95

Figure B1. (a) The latent Goldstein-Price Function f(x) together with (b) its heteroscedastic noise function g(x) and (c) the
objective function f(x)+ g(x).

Figure B2. Goldstein-Price function noiseless case. All Bayesian optimisation methods outperform random search. ANPEI
performs best and HAEI is runner-up.

B.1.2. Homoscedastic noise case
The results of the homoscedastic noise case for Goldstein-Price are shown in figure B3. In this instance HAEI
performs best.

B.1.3. Heteroscedastic noise
The results of the heteroscedastic noise case for Goldstein-Price are shown in figure B4. ANPEI performs best
whilst HAEI performs worse than random search.

B.2. Branin-Hoo function
The form of the Branin-Hoo function is given in equation (6) with noise function in equation (7). The
function is visualised in figure B5, a figure from the main paper repeated here for clarity. Nine data points are
used for initialisation in the noiseless and homoscedastic noise cases whereas 100 data points are used for
initialisation in the heteroscedastic noise case. β is set to 0.5 and γ is set to 500 for all experiments.
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Figure B3. Goldstein-Price function homoscedastic noise case. HAEI performs best.

Figure B4. Comparison of heteroscedastic and homoscedastic Bayesian optimisation on the heteroscedastic 2D Goldstein-Price
function. (a) Shows the optimisation of h(x) = f(x)+ g(x) (lower is better) where g(x) is the aleatoric noise. (b) Shows the values
g(x) obtained over the course of the optimisation of h(x).

Figure B5.Heteroscedastic Branin function.
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Figure B6. Branin-Hoo function noiseless case. HAEI performs best. ANPEI performs worst.

Figure B7. Branin-Hoo function homoscedastic noise case. All Bayesian optimisation methods outperform random search.

B.2.1. Noiseless case
The results of the noiseless case for the Branin-Hoo function are given in figure B6. HAEI performs best in
this case whereas ANPEI performs worst.

B.2.2. Homoscedastic noise case
The results of the homoscedastic noise case for the Branin-Hoo function are given in figure B7. All Bayesian
optimisation methods outperform random search yet perform comparably against each other.

B.2.2.1. Heteroscedastic noise
The results of the heteroscedastic noise case for the Branin-Hoo function are shown in figure B8. ANPEI
performs best whilst HAEI performs worse than random search.
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Figure B8. Comparison of heteroscedastic and homoscedastic Bayesian optimisation on the heteroscedastic 2D Branin function.
(a) Shows the optimisation of h(x) = f(x)+ g(x) (lower is better) where g(x) is the aleatoric noise. (b) Shows the values g(x)
obtained over the course of the optimisation of h(x).

Appendix C. Performance impact of the kernel choice

In this section we analyse the impact that the choice of GP kernel has on Bayesian optimisation performance.
We select three kernels for this purpose: the SE kernel

kSQE(x,x
′) = σ2

f · exp
(−∥x− x′∥2

2ℓ2

)

used for all experiments in the main paper, the exponential kernel

kexp(x,x
′) = σ2

f · exp
(−∥x− x′∥

ℓ

)
,

a special instance of the Matérn kernel for values of ν = 1
2 [33] as well as the Matérn 5/2 kernel

kMat́ern(5/2)(x,x
′) = σ2

f ·
(
1+

√
5∥x− x′∥

ℓ
+

5 ∥x− x′∥2

3ℓ2

)
· exp

(−√
5∥x− x′∥
ℓ

)

which is one of the most popular kernels for large scale empirical studies [64, 65]. It should be noted that
while the equations are written assuming a single scalar lengthscale, in practice for the experiments in greater
than 1D, each lengthscale is optimised per dimension under the marginal likelihood. For all experiments we
choose the same kernel for both GPs of the MLHGP model i.e. the GP modelling the objective as well as the
GP modelling the noise. 100 points are used for initialisation in the Branin-Hoo and Goldstein-Price
functions and 144 points are used for the Hosaki function. β is set to 0.5 for the Branin-Hoo and Hosaki
functions and 1

11 for the Goldstein-Price function. γ is set to 500 for all experiments. The results are shown in
figures C1–C3 for the Branin-Hoo function, Goldstein-Price function and Hosaki functions respectively.
There is no significant difference in performance using each kernel save for the Branin-Hoo function where
ANPEI underperforms using the somewhat rougher exponential kernel.
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Figure C1. Branin-Hoo function kernel comparison.

Figure C2. Goldstein-Price function kernel comparison.
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Figure C3.Hosaki Function kernel comparison.
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